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A delay-differential equation e f i ( t )+u( t )=f (u( t -1) ) ,  O~<t<o% and its 
generalization are investigated in the limit e ~ O, when the attractor's dimension 
increases infinitely. It is shown that a number of statistical characteristics are 
asymptotically independent ofe. As for the attractor, it can be regarded as a 
direct product of O(1/g) equivalent "subanractors," their statistical charac- 
teristics being asymptotically independent ofe. The results enable one to predict 
some characteristics of the attractor with fractal dimension D >> 1 for the case 
g ,~ 1, when they are inaccessible numerically. The approach developed seems to 
be applicable for a wide class of spatiotemporal systems. 

KEY W O R D S :  Chaos; delay-differential equation; domain structure; invariant 
distribution. 

1. I N T R O D U C T I O N  

In past decade a good deal of success has been achieved in the study of the 
attractors of low-dimensional dynamical systems. However, most such 
systems were derived as approximations to original infinite-dimensional 
models, so a number of questions arise, e.g.: Is it common that their 
properties can be satisfactorily described by a low-dimensional approxima- 
tion, or do there exist models allowing no such approximation? How does 
the chaotic behavior become complicated as the dimension increases? 

To study these questions a model is needed whose attractor's dimen- 
sion increases infinitely as some control parameter is varied. The technique 
developed for low-dimensional dynamical systems analysis would be inap- 
plicable to this model, and one could expect some "infinite-dimensional" 
features to reveal themself. 

As such a model a differential-delay equation of the form 

efi(t)+u(t)=f(u(t-1)), 0 ~ < t < ~  (1.1a) 
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can be used. The model arises in the field of nonlinear optics, medicine, 
control theory, etc., (~-6) and is rather convenient for numerical analysis. 
Indeed, if u,(t) (O<~t<<. 1) denotes the solution on the interval In, n +  1], 
Eq. (1.1a) can be rewritten as 

ef i ,+,( t )+u,+~(t )=f(u , ( t ) ) ,  0~<t~<l, u,+,(0)  = u,(1) (1.1b) 

Now, given the initial data, i.e., Uo(t), one solves the linear equation (1.1b) 
and obtains Ul(t), then substitutes it in the right-hand side of (1.1b) and 
obtains u2(t), and so on. 

Usually the variable t is regarded as a time. But the delay-differential 
equation, if written in the form (1.1b), allows another interpretation. As a 
matter of fact, this equation is a map u,+ ~ = S~[u~] in the functional space, 
so it is convenient to regard n as "an actual time," with t as "a spatial coor- 
dinate" describing the profile of u, in a given "time" n. In other words, it 
is convenient to regard Eq. (1.1) as an evolution of functions {u,(t)} 
defined on the "space" sample 0 ~< t ~< 1. 

Many numerical experiments (1-6) indicate that the model exhibits 
chaotic behavior with its attractor's dimension growing as O(1/e). 
Nevertheless a number of statistical characteristics of the model, e.g., 
the sealed correlation function C(~/e), stationary distribution p(u(t)), 
Lyapunov spectrum, etc., are asymptotically independent of e (as e ~ 0); 
thus in this very complex behavior some simple laws are expected to be 
found. This paper presents such an asymptotic theory. 

Along with the original model (1.1) we will consider its modification 

e f i ,+l ( t )+u,+, ( t )=f (u , ( t ) ) ,  0~<t~<l, u,+l(0) = z, (1.2) 

where {z,} is some random sequence, "noise." It is dubbed "a model with 
an external excitation," for in the absence of such an excitation (i.e., when 
z, = const) any oscillations damp, the solution converging to a steady state 
u*(t): 

u.(t) " ~ ,  u*(t) 

So only due to this "external force" is a complex behavior (which does exist 
provided 6z = max zn - min z, r 0) possible. A similar "noise-sustained" 
chaos was observed by Deissler in a PDE. (ls''9) A marvelous feature of the 
system is that the external excitation that gives rise to chaotic oscillations 
exerts almost no influence on their characteristics! 

The model (1.2) thus can be said to be "an amplifier of chaos" as 
the "output amplitude" (at the point t = 1) appears to be considerably 
greater than the "input" one (at the point t = 0 ) ,  that is, the amplitude 
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of the external excitation (see Figs. 7 and 8). But, in the case e ~ 0  this 
"amplifier" is also a "transformer" and a "restrictor," as the characteristics 
of its output {u,(t)} are almost independent of those of its input {z,}. 
And, being almost independent of {z,}, these characteristics converge to 
those of the basic model (1.1) as e goes to 0! 

The theory advanced can be applied not only to the delay-differential 
equation, but to a wide class of models of spatiotemporal chaos, e.g., to 
coupled map lattices and reaction-diffusion systems, in which it predicts 
statistical characteristics with asymptotic independence of the area size. 
Also predicted is "forgetting boundary conditions": the influence of the 
latter exponentially damps and almost vanishes at internal points. As for 
the model with an external excitation, its analysis seems to be useful in 
studying noise-sustained chaos in open flow systems. 

2. BASIC PROPERTIES OF THE M O D E L  

As said above, Eq. (1.1b) can be regarded as a map (in functional 
space) if one derives u,+ 1(0 from un(t): 

u~+l(t)=(~Un)(t)=-u.(1)e-t/~+ e(-t+~)/"f(u~(z))dz/e (2.1) 

In the same way the model with external excitation leads to the "noisy" 
map 

= z,e t/, + Io e(-t+~ clr/e (2.2) 1(t) Un + 

Hereafter we suppose that there exists an interval [ - C ,  C] mapped 
by f into itself: f (  [ - C, C] ) ___ [ - C, C]. 

2.1. Boundedness 

Let [u.(t)[ ~<C; then [f(u.(t))[ <. C, from which it follows that [-see 
(2.1)3 

lu,+l(t)[<~Ce-t/~+C(1-e-'/~)=C; [fi,+l(t)[<~2C/e 

Hence, there exists a bounded set in C (1) space which is mapped into itself 
by the operator S~. In other words, the infinite-dimensional map (2.1) 
possesses a compact attractor. 

The same conclusions hold for map (2.2), too, provided [z,[ ~< C. 
Thus, the solutions of both models along with their derivatives are 

bounded, and [ti,[ ~< O(1/e). But perhaps the latter estimate is too excessive 
and actually l i m ~  o ~ I~.l = 07 Were this so, it would be possible to obtain 
an approximate model for the case e ~ 0 by discarding the term ~fi, thus 
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reducting the original system to a lattice of uncoupled 1D maps: un+ 1(0 = 
f(u,(t)), 0 <~ t <~ 1. 

The possibility of doing so depends on the features of the map 
X,+l=f (x , ) .  Namely, experiments show that if this map possesses a 
stable limit cycle, the solution {u,(t)} proves to be meanderlike [i.e., 
approximately constant except for some tiny intervals of length O(e), where 
Ifi,[ is of order l/z]. That in most of the interval 0 ~< t~< 1 the term efi,(t) 
is 41  implies that the approximation u,+l(t)=f(un(t)) proves to be 
valuable, its use leading to interesting results. (2'3) Provided some conditions 
are satisfied, it is possible to prove that the existence of a stable limit cycle 
in the sequence Xn+l=f(x , )  results in the existence of a stable periodic 
solution in Eq. (1.1). 

The situation is absolutely different if the map Xn+~= f (x , )  is chaotic, 
i.e., its Lyapunov exponent 2 > 0 (this is the case when the attractor dimen- 
sion increases infinitely as e goes to 0). Really, were I~,1 bounded (in the 
limit e ~ 0), the term efi,(t) would be negligible, thus the equation would 
reduce to 

Un(t) = f (u ,_  l ( t ) )  . . . . .  fn (Uo( t ) )  

la~(t)l--I(f")  ' (Uo(t))l- lao(t)l 

From the definition of the Lyapunov exponent it follows that I(f") '  (x)l = 
O(e an) for n large enough and most points x, which leads to an estimate 
I~n(t)l = O(e ;'n) I~0(t)l holding for n >> 1. Hence, the derivative I~,(t)l grows 
as O(e ~~) (at least at most points of the interval 0~<t~<l), which 
contradicts boundedness of the solution derivative. So the supposition that 
in the limit e ~ 0 the term eric(t) is negligible is wrong. In other words, it 
means that I~1 cannot grow more slowly than 1/e and, because it also 
cannot grow faster, it has to grow precisely as O(1/e). 
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u.(t) in the model (1.1) for r  (left) and r  (right). 
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In this work f ( x )  of the form f ( x ) =  1 - a  Ix] was chosen, which, for 
a >  1 (a is a =  1.9 throughout the paper) is chaotic because [f'[ > 1. There- 
fore [~in[ = O(l/e), and the smaller the e, the more ragged the solution (see 
Fig. 1); the same holds for the model with an external excitation (Fig. 2). 
This implies that the integration step should be very small, and a simple 
reasoning indicates that "small" means "not greater than e." To obtain this 
estimate, let us approximate the integral in (2.2) by a piecewise constant 
formula, which is equivalent to integrating Eq. (1.2) by the Euler method: 

U,,+l(ti  ) i q_h s =o~z,, od f (u, , (O))  , a = e  h/t, t i = ( i _ l )  h (2.3) 
J--I 

If Zn = const, the original equation (1.2) has a stable fixed point u*(t), i.e., 
in this case 

u,,( t )  . . . . .  , u * ( O  

which will be proved in Section 4. Having linearized the transformation 
(2.3) in the vicinity of the fixed point, we obtain the Jacobi matrix 

(~(/'/n + 1 ( t l )  ..... Un+ I ( [ N ) )  

O(u, , ( t , )  ..... u , , ( tN))  

[ f /  0 0 0 0 0 \  

= : ~ ! {  ~ f l '  fz' 0 0 0 0 j  

\ ~ N - ' f t  . . . . . . . . . . . . . . .  f } /  

It can be easily seen that its eigenvalues are a(h /e ) f / ,  and so, if 
o~(h/e) max Jf ' l  < 1, all of them are less than 1. Therefore, if h ~< e/max If 'I ,  
the discrete equation (2.3) also may have a stable fixed point. 

On the contrary, if one uses the integration step h > ~/max If ' l ,  then 
all eigenvalues are > 1, and thus the fixed point (if exists) is at any rate 

Fig. 2. 

1.or 
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u,(t) in the model  (1.2) for ~ = 0 . 0 2  (left) and  e = 0 . 0 1  (right). In both  cases the 
exci tat ion is uni formly dis t r ibuted noise with ampl i tude  6:  = 0.01. 
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unstable. So the discrete transformation (2.3) is unable to mimic even the 
qualitative properties of the original equation. 

This means that for Eq. (2.2) to be integrated correctly (by the Euler 
method) the step should be less than e/max [f'[. If one uses more 
sophisticated methods (that of Adams, etc.) an insignificant factor of about 
O(1) will precede the estimate. 

Since the models (1.2) and (1.1) have many common properties, one 
may expect the condition h ~< cO(l) to hold for the latter, too. Numerical 
experiments have confirmed this and showed that h =-(0.14).2)e is enough 
for integration, further decreasing it only wastes CPU time, the computa- 
tional accuracy increasing insignificantly. 

2.2. Decay of Correlat ions 

As the integrals in both (2.1) and (2.2) contain the rapidly damping 
factor e x p [ ( - t +  r)/e], which may be neglected for z < t - r e  [within the 
accuracy O(e-r)] ,  one obtains for t > re: 

f2 u , + l ( t ) =  e-~ f (u , ( t -e~) )d~+O(e  -r) (2.4) 

for both models (1.1) and (1.2). Hereafter r = 5 will be used for convenience 
in the evaluations. 

To put it in another way, Eq. (2.4) means that u,+ 1(0 is determined 
by u,(r) on the interval t - 5 e  ~< ~ ~< t only, the latter in turn being deter- 
mined by u,_ l(r') on the interval t -  10e ~< r'~< t, and so on. Therefore the 
autocorrelation function 

(u( t )  u(t + ~) ) - (u( t )  )2 
c ( r ) ~  (u2 ( t ) )  _ ( u ( t ) )  ~ (2.5) 

should be sufficiently nonzero only for ~ ~ 0, 1, 2 .... (Fig. 3). Note that here 
it is more convenient to define the autocorrrelation function of the 
"continuous" solution u(t), 0 ~< t < m, rather than of the sequence {u,(t)}, 
0~< t~< 1. One can easily find that C(z) for 0~<~ ~< 1 corresponds to the 
correlation between u,(t) and u,(t + r), while for 1 < ~ ~< 2 it corresponds to 
that between u,(t) and u,+l(t+ [ ~ -  1]), and so on. Such a behavior of the 
autoeorrelation function is a first confirmation of the idea that the interval 
0~< t~< 1 partitions into O(1/e) domains of length O(e), the dynamics on 
different domains being almost independent. 
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Fig. 3. Correlation function C~(r) in the model (1.1) for e =0.01 (top) and e = 0.02 (bottom). 
Right column shows the scaled initial part of C~(r). 

2.3. The Model 's  Stat ist ical  Properties: Prel iminary 
Formulas 

For  our  further deduct ions to be more  convenient,  let us make  some 
agreement  on the notat ions.  Namely ,  the solution on the n th iteration, 
being "the a rgument"  of the t ransformat ion  (2.1)-(2.2), will be denoted as 
v(t), while that  on (n + 1)th i terat ion will be denoted as u(t) [_just as it is 
somet imes  more  convenient  to write y = f ( x )  instead of xn+ l =  f ( x , ) ] .  

Then,  the sets of the associated lattice function values will be denoted 
as u = { u ( t l )  ..... u(tN)} and v =  {v(tl)  ..... V(tu)}, and, finally, let ui=u(ti) 
and v i :  v(ti) (without  an a rgument  and vector  sign) denote  the values 
of the corresponding lattice functions at the point  t i = ( i - 1 ) h =  
( i -  1 ) / ( N -  1). 

Hereaf ter  we will consider f inite-dimensional t runcat ion of the original 
map,  i.e., the N-dimensional  t rans format ion  {v I ..... VN} ~ {Ul,..., UN}, 
Ui =-- U(ti), i= 1,..., N. Note  that  the par t icular  form of this m a p  depends on 
the actual  me thod  of t runcat ion  and is of no significance for further 
deductions.  

Since in the original m a p  u(t) for t > 5e is determined by v(t') on the 
interval t -  5e ~< t' ~< t [see Eq. (2.4)] accurately enough, so it will be in the 
difference equat ion:  in the latter u(ti) is determined by {v(t~_L) ..... v(q)}, 
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L =  5a/h. We will choose (for convenience to be revealed below) h =5/2; 
therefore L = 10, and, within the accuracy O(a 1~ = O(e -5) we have 

HI  : / )N 

u2 = F2(vl, v2) + ~VN, ~ = e h/~ 

u i = F ( v i  10,.--, vi), i =  11,..., N 

(2.6) 

or, in a brief form, u = F(v). 
As was already mentioned, the form of the functions F, F i depends on 

the difference scheme used, and is of no importance for us. But that for a 
given scheme the functions Fi (for i > 10) are the  s a m e  [within the accuracy 
O(e s)] is a very significant fact resulting from the independence of the 
kernel in the integral (2.5) oft. Moreover, if one keeps the relation hie  

fixed, the functions F1 ..... Flo and F are independent of ~ (i.e., of N); it is 
only the number of variables that varies while the connections between 
them do not: u i = F ( v  i _  10,..., vi),  for i >~ 11. 

The map un+ L = F(un) gives rise to a transformation of probability dis- 
tributions p~+ ~)(u)= (~Np~))(U), where p~)(u) denotes the distribution 
of {un} on nth iteration, and ~ u  is the Frobenius-Perron operator 
(FPO),(9 12) 

p~ + 'J(u) = (~N PT)(") 

- f 6(u - F(v))  p ~ ( v )  av 

f (~(Ul - -  UN) . . . . .  (~(IAN - -  F ( V N -  10 . . . . .  O N ) )  

X p ~ ) ( U ) ( D  1 , . . . ,  IAN) d V l . . ,  dlA N (2.7) 

Sometimes the operator s176 u is written in the form 

( ~ N p N ) ( U )  = ~ p N ( V ) / l D e t ( O F ( v ) ) l  
Vv: F(v) = u 

The Krylov-Bogolubov theorem states that if the iterated map un + ~ = 
F(un) possesses a compact attractor (and it does possess one, as we have 
seen above), it possesses an invariant probability density pN(U). It is the 
density which does not change during the iterations, that is, it obeys the 
equation: 

PNIU~) = ( ~ p ~ ) ( U )  



Asymptotic Theory of Multidimensional Chaos 789 

called the Frobenius-Perron equation, which is widely used in ergodic 
theory. (9,12) 

The particular form of the map (2.6) allows us to reduce the 
"full" Frobenius-Perron operator (2.7) so as to derive the distribu- 
tion p ( n + I ) ( u N _ k , . . . , U N )  of k + l  variables {UN-k,..,UN} only from 
p(") 10(UN-- UU). The partial distribution p~"+ 1)is k+  k 10 ~"'~ 

P n+l) f t t  -- , "'" I k ', N--K,'" U N ) - - j P N + I ) ( u ) d u l  d U N - k  

and substituting in this integral p~+  1)= ,j,jv p~), one obtains 

p~n-b 1)(~/N_k,. . . ,  ltN) 

f P ~ + I ) ( u )  d t / l " ' d l A N - k - 1  

= I ( ~ N P ~ ) ( " )  du, . . .dUN_~_l 

xdul "':dUu_k_x 

= f (~(UN--k -- F ( 1 ) N - k -  10,'--, VN--k) )  . . . . .  (~(blN- F ( V N - 1 0  ..... UN)) 

=-f 6(uu k--F(vN-k-IO ..... VN k))  . . . . .  6(UN--F(ON--IO, . . ' ,  I)N)) 

X n(n) t,, F k + lO~,UN--k - i 0 ' " "  VN) dVN--k-- 1 0 ' ' "  dON (2.7') 

which is equivalent to 

p(n + 1)r u 
k ~ N-k:,'"~ UN) 

= f N U N _ k _ I O . . . d U N _ k _ I  f ~ ( U N _ k _ I O - - V N )  X . . .  

X 6(UN_ ~ -  r(vu_k_10,..., VN--k)) X . . -  X 6(U N -  (vN_ sO ..... VN)) 

Xyk+,(n) 1 (/.) N _ k-- 10 ..... VU) dvu_ i, - 1o"" dvu 



790 Ershov 

The second integral in this expression is easily recognized as nothing but 
the Frobenius-Perron operator c~7~k+~0 of (2.7), so 

p(n+ f k 1)(/"/N--k ..... UN)= dUN--k--lO" "'dUN- k-- l("~'k+ lO/'/k+n(n) 10) 

X (U N k--10 ..... UN) i f  N > k - - 1 0  (2.8) 

In absolutely the same way a second iteration of this formula can be 
obtained which reads 

p ( n  + 2)/' , ,  
k k~N--k~ '''~ UN) 

= f (~2+20P~)20)(UN-k-20'"" UN) dUN--k_20''" dUN_k_ 1 

[having done the integration, one easily finds that it is nothing but the 
transformation (2.7') applied twice]. Further generalization leads to 

p(n+m)(,, UN ) k I ,~N--k~'",  

f UN) dUN k duN-k_l (2.9) (,~k+lOmFk+lOrnt,,,Am n(n) ~(U N--k--lOmb'", - - 1 0 m ' ' "  

It is remarkable that for k < N - 1 1  this operator ~k depends on k only, 
thus being independent of e (or N) provided h/e is kept fixed (i.e., if 
N oc l/e)! 

When studying one-dimensional maps x , + l =  f (x , ) ,  (12'25) it was found 
that if the invariant density is absolutely continuous, the iterations of any 
smooth initial distribution p(O) exponentially converge to the invariant one: 

I[~mP (~ -PI[ = O(/s ~ = const < 1 

where fa is the F P O  associated with the 1D map x,+l =f(x,)  and here 
and henceforth I1" II L, denotes the L1 norm. This implies that the iterates of 
two initial distribution quickly converge: 

[I.~m(p (~ --p(0))l I = 0(~. m) 

The same may be expected 2 to hold for the multidimensional map (2.6): 

I[~Te(P~ ) -p~))ll = O(tc'[N-]) (2.10) 

2 In the presence of noise, however small, the estimate can be proved rigorously (see, e.g., 
ref. 14). 
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Notice that these relations at least require that the corresponding measures 
have densities (we might work with generalized densities, regarding, e.g., 
the Dirac measure as possessing a density; but there is no appropriate 
norm in this case). Fortunately, we do not need that the full measure itself 
have a density--because throughout the work we actually only deal with 
its finite-dimensional projections. And if the spatial correlations decay, then 
these projections are absolutely continuous; see ref. 26. This is also justified 
by experiments: one- and two-point distributions are obviously continuous 
(see Figs. 4 and 5). 

If these suppositions are satisfied, then (2.9) results in 

ilp~ml_pkll ~ m _ ,,(0) ~11 = O(x[k+ 10m] m) (2.11) = [[~k+lOm(Pk+lOm l'k+lOrnll 

the estimate not including the total number of variables N (or e), as it 
describes convergence to the invariant distribution of a given part of 
variables. 

To put it loosely, it indicates that the equilibration at distant points 
goes on independently. 

Now a remark should be made on the dependence of "the convergence 
exponent" ~c on N (ore).  As during one iteration of (2.1) [or  (2.2)] the 
influence area of the "boundary condition" (imposed at the point t =  0) 
moves right of about 5~, it would take, generally, O(1/~) iterations for an 
equilibrium state to settle throughout the interval 0 ~< t ~< i. Such a slow 
(in the limit e ~ 0 )  convergence would mean that lim~_o tc= 1. But, in 
Eq. (1.1a) [and, therefore, in (1.1b) 3 and all its discrete derivatives] u(ti) 
behaves equally. So, if the initial distribution Pinit(Ul,..., UN) is such that all 
its arguments u(ti) are equal [that is, the function Pinit(Ul,..., UN) equally 
depends on its arguments], all parts of the interval 0 ~< t ~< 1 will contain 
the same information; thus one need not wait till the influence of its left 
side t = 0 reaches the domain t = 1, which process would take O(1/e) itera- 
tions. Roughly speaking, at first a stationary distribution in each time 
domain of the length /It (e ~ At,~ 1) will settle, and then the correlations 
between close domains will settle (the distant domain intercorrelations 
need not settle, due to their independence, as the autocorrelation function 
indicates)--and so the invariant distribution will settle simultaneously 
throughout the interval. Both processes take place on the scale O(e), so 
their "rate" is independent of e [ that  is clear if one substitutes a "global" 
time t in (2.4) for a "local" one t '= ( t - t*) /e ,  which results in e being 
excluded from the equation].  

3 The point t=0 [or t=n, n=0, 1,..., in Eq. (1.1a)] appears to be artificially distinguished, 
because while dividing the time domain into the (fundamental) intervals In, n + 1 ] it falls on 
their left end. As for the original Eq. (1.1a), no point is distinguished at all. 

822/69/3-4-22 
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The physical explanation allows a mathematical formulation of which 
we will produce only the gist, omitting the details. 

If spatial correlations between distant points decay quickly enough, 
then in the conditional distribution P(u~lui+i,...) all uj can be discarded 
for which [i-jl  >> 1. (For the sake of clarity only ui+l will be retained). 
It can be shown that the distribution pN(Ul ..... UN) (which should not 
be confused with the invariant distribution PN) allows the following 
representation: 

UN)=f  (e(ua I u2)"P(u2 I u3) . . . . .  P(UN I U N + I )  . . . .  )dUN+I "'" ,ON(Ul,..., d 

with the accuracy increasing as more factors follow P(UNIUN+I). Let us 
retain ten of them. Now let us consider two close distributions, 
pN(Ut,..., UN) and ~N(Ul ..... UN) and denote P(ui I Ui+l)-P(ui I Ui+l)- 
AP(uilui+ 1)~ 1. Then the difference HfiN--PNHLI can be evaluated as 

IIPN- PNIIL~ 

=fP(ul l u2) . . . . .  P(UN+9 ] UN+10) 

X ( AP(ul [u2) AP(UN+9 l UN+I~ du l...duN+ m 
-P-ff  l + " " + P-ff + 9 1 U  + lO ) : j 

-= ( N +  10) 1/2 f PN+ 10(Ul ..... UN+ 10) 

(D(Ul, U2) -~- "'" -~- (/9(UN+9, UN+ 10) 
x ( N +  10) 1/2 dUl"" dUN+ 10 

---- ( N +  10) 1/2 f PN+IO(Ul ..... UN+ 10) 

X 6 (Z (P(Ul' u2) "{- "" ~ - ~ - 1 ~ / ~  ")]Z] du 1 ."dUN+ 10 

-- ( X +  10) 1/2 f Izl ~(z) dz 

Applying to this expression the method of Fourier transformation used in 
the proof of the central limit theorem, we get an asymptotic (for N ~  1) 
expression for the function 4: 

1 
�9 (z) =-~ e (z/2R)2, R ~ / f ( ~ P ( U l  [u-~))) 2p2'ul' u2) dul P(u I [ 



Asymptotic Theory of Multidimensional Chaos 793 

Thus 

[IPu-  pull L~ = C ( N  + 10) 1/2 p2(u , ,  u2) dul du2 

so for two different N's (both >> 1) we get 

I l f i N  - -  P N l l  L 1 = ( N / N ' )  1/2 I l f iN'-  Pu'll L 1 

It obviously holds for "m "m ~ " m  , , ~ m  ~ ~'NPN, ~NPN,  ~N'PN',  and N'PN', which are 
distributions of the same type as PN, fiN, PN', and /~U', hence 

~ m  ~ = II~N'PN" -- ~N'PN'IÎ "~ L,/IIPN" - ~u,ll 5e NPui ls  PNlIL, Am ~ I I ~L# N P N _ ~ m 

which means that the convergence exponent ;c [see (2.10)] is asymptoti- 
cally independent of N. 

All further considerations will concern only distributions whose 
arguments u(t;) act equally, the estimate (2.9) containing a convergence 
exponent K independent of ~ for such distributions. 

3. STATISTICAL PROPERTIES OF THE SOLUTIONS OF (1.1) 
AND THEIR D O M A I N  STRUCTURE IN THE CASE E-~O 

Let us denote a stat ionary distribution of the variables ( U N _ k , , . .  , b iN}  

[here U s = U ( t ~ ) = u ( s . h ) ]  a s  pe,k(UN_k,...,UN), and compare it with 
pe,,k(WN,_k,..., WN,), where (wi} denote the variables in the map for e' 
(e' <e).  Applying (2.9) to P~,k, which does not change during iterations, 
we get 

pe, k(UN--k,..., UN) 

f = (2'~ lO . . . . . .  uu)  d u u _ ~ _ ~ o m ' " d u u  k -~  

the operator being independent of ~ and N for k < N -  10m. Therefore P~',k 
should obey the same equation: 

pg, k(UN'--k . . . . .  UN '  ) 

: ~  (~'k+lomP~',k+lOm)(Uu ' k - - 1 0  . . . . . .  UN')dblu'--k !Orn'''dbIN'--k l d 

and using (2.10), one obtains 

II P~,k - P~,,~ II A ,, = It~k+lO,,(P~,k+lOm--P~',~+lOm)ll = O ( # ~ )  
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The estimate holds if k + 10m < N -  10, i.e., m ~< M = ( N -  k - 11)/10; thus 

Ilp~,k__p,,klb=O(x(N k I1)/IO)=o(~O(N))=O(K1/~:), ~ ' ~  (3.1) 

Certainly, this estimate holds for any k +  1 variables {uj_k,..., uj}, as all uj 
are equal. We used j = N  only because tN = 1 in Eq. (1.1b) [or  points 
t=1 ,2 ,3 , . . ,  in (1.1a)] are artificially distinguished as end(s) of the 
fundamental intervals [n, n + 1 ]. Obviously by adjusting this interval (e.g., 
[z + n, z + n + 1 ]) one can make any tj to be such an "endpoint" instead 
of t N. 

It is worth mentioning that the exponent x in (3.2) is independent of 
k; see end of Section 2. 

The computations confirm the conclusion that the invariant distribu- 
tion is asymptotically independent of~; see Figs. 4 and5,  where the 
one-point distribution p(u( t ) )  and contours of the two-point distribution 
p(u(t) ,  u(t + z)) (for z/e = const) are plotted. 

In the very beginning a supposition was advanced about the attrac- 
tor's domain structure for ~ ~ 0, that is, about a mutual independence (in 
a sense) of the solution Un(t) on distant intervals. Now we should define 
this mathematically. To do this, let us look at two groups (I and II) each 

0 , 6 -  

0.4- 

0.2 0.20[ 

0"~.0 JO O. 0 -0.5 0.0 0.5 I!0 
U(t) u[tl 

- . 0 5 0  ~ = . 0 2 0  

~ ~ !o " o 
u [  t ] u[t I 

= .010 e .005 

Fig. 4. Stationary one-point distribution p~(u(t)) in the model (1.1) for e=0.05, 0.02, 0.01, 
and 0.005. 
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1,0 ru[ t :  
0,5 
0.0 

0.S 0,5 

-~5~.0 -0% 0% oh ~!o-~~ 
u ( t ]  

c = . 0 2 0  " r / e  : 1 . 0  

1.0 U[ : /  t.+T 

0,5 

0.0 

~ o.'o oh ,!o 
u [ t ]  

s : .010 ~/c  =1.0 

Fig. 5. Stationary two-point distribution p~(u(t), u(t+z)) in the model (1.1) for e=0.02 
(left) and e = 0.01 (right). In both cases z = ~. 

o f  k + 1 variables, {uj ..... + + k }  and {UN_~,..., UN}, the associated intervals 
[tj, tg+k] and [tu_k, IN] being disjoint (i.e., j + k < N - k ) .  It is these 
intervals that are dubbed domains;  here domains  of  equal  length ( =  kh) are 
chosen  for simplicity. 

[J( ~ t  -------~1 
I II 

I I t I t 
t I tj tj+ k tN_ k t N 

Let 

=- f P( )(ll)dUl""duj-l duj+k+,'"dUN k-1 

be invariant distributions of  these variables on  the n th iteration. Sub- 
stituting in this integral L#up~)=p~ +I) and transforming it in the way  
used in the derivation of  (2.8), one  gets for p<"+ 1) k,j 

p(n+ 1)1,,, 
k,j  ~,~j ..... blj+k; UN--k ..... gtN) 

= :  5 ( u j - - r ( v j  lO,.--, 1)j)) . . . . .  6 ( u j + k - - r ( v j + k  lo,.'., v j + k ) )  

X~)(UN k--F(l)U--k--lO ..... 1)N--k)) . . . . .  ~ (UN- -F(1 )N  10 ..... ON)) 

rt(n) 
XFk+IO,  j - IO(Uj - IO , ' " ,  1)j+k; I)N k 10 ..... /)N) 
• k lO---dvN (3.2) 
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which is equivalent to 

p ( ~ +  k,j 1) (Uj '  " ' ' '  blj+k; UN--k ..... UN) 

= f  d U j _ l O ' " d U j - l d U u  k - - l O ' ' ' d U u  k--1 

x f (~(Uj 10 - -  /AN) . . . . .  O ( U j _ I - - F l o ( V j _ l o , . . .  , Vj 1 ) - -  ~ 9 U N )  

x b ( u j - F ( v j  ,o ..... v j ) )  . . . . .  6 ( u j + k - - F ( v j + k _ l o , . . . ,  v j + k ) )  

X ( ~ ( U N - k - I o - - F ( V j + k - 9  ..... 1)j+k,1)N k 10) )  X " ' "  

X~)(UN k--l--F(Vj+k, VN--k 10 . . . . .  / ) N - - k - - l ) )  

X(~(UN-k- -F(1)N k - 1 0  ..... 1)U k)) . . . . .  (~(UN--F(VN 10 ... . .  V N ) )  

n(n) 
X y k +  10, j 10(Vj--  10 ..... Vj+k; 1)N--k 10 ..... UN) 

xdvj m...dVj+kdVN_k_lo...dVN 

The internal integral is recognized as the FPO ~L~2k+2o in which the 
variables are arranged as follows: {v~ 1o ..... v j + k ,  VN k - l O , ' " ,  VN} :  

p(n+ k,j I ) ( U j  ..... ~tj+k; UN k '""  UN) 

= f d u j _  lo"'" du j  _ 1 dUN _ k - lo"'" d u u  _ k - 1 

20 F k +  10, j 10 ) (Uj - -  10 ..... Uj+k;U N k_IO,. . . ,UN) ( 3 . 3 )  

In absolutely the same way we can derive the mth iteration of this formula: 

k,j z I. 2k+lOmUk+lOm, j-- 

• dUj_lOrn...dUj_ldUN k--,Om'''dUN k 1 (3 .4 )  

[-having done the integration one finds that it is nothing but (3.2) applied 
m times]. From (3.4) an estimate similar to (2.11) follows: 

p(m) O(l~m) (3.5) ks --Pk,/IL~ = 

Now let us take the initial distribution of the form 

p(O) g,, 
k',j'~"j',..., Uj' +k' , llN--k% .... UN) 

= pk'(Uj' ,  .... Uj'+ k' ) " pk ' (Uu--k ' ,  .... UN) 
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where Pk, is the invariant distribution of k + 1 variables, which due to the 
equality of different t's is the same for {u/,..., u/+k,} and {Uu_k,, .... UN,}; 
and let k ' - - -k+ 10m and j ' = j - l O m  for some m to be specified below. 
Then from (3.2) [which equivalent to (3.3)] it follows that 

P(k !)- lO, j ' +  lO(~/j' + 10, '" ,  blj'+k'; blu--k'+ 10 ..... /AN) 

=Pk' Io(Uj'+lO,---, Uj'+k')"Pk' lo(UN-k'+lO, "'', UN) 

Obviously the distribution on the m th iteration will also be "factorizable": 

p(kmj)'(Uj, ..., Uj+k; UN--k,..., UN)= pk(Uj,..., Uj+k) Pk(UN--k ..... lgN) 

(recall that k = k ' - 1 0 m ,  j = j ' +  10m), and at the same time (3.5) results 
in .(m) Vk, j --Pk, j]lLl=OOCm), thus IIpk.j-- pk" pkll =oocm). The choice of 
initial distribution allows any m such that N - k ' > j ' + k '  (so that 
p(k~ corresponds to disjoint 4 domains). Recalling that k ' = k +  10m 
and j ' = j - 1 0 m ,  we obtain the restriction on m: rn~<M= 
[ ( N - k ) - ( j + k ) ] / l O .  The difference n Pk, j--Pk'Pkl[ is obviously inde- 
pendent of our choice of m, so we can take m = M to get the best estimate: 

tlPk, j - -pk 'pk l l=O(~Cm)=o e x p \  10~ h 

/ - c a r ~  
= O  ~ e x p ~ )  (3.6) 

Were the behavior on the domains mutually independent, the joint 
invariant distribution pk, j(uj,..., Uj+k; UN_~,..., UN) would be a product of 
partial ones: pk, j(u~, u n ) = p k ( u 0  . p~(uii). But since this independence is 
not absolute, a discrepancy IIP~,~-Pk" P~II arises that measures the degree 
of independence. The estimate (3.6) indicates that the spatial correlation 
decays exponentially. 

So, if the interval 0 ~< t ~ 1 is considered as partitioned into L domains, 
the, say, odd domains (separated from each other by an interval At = l /L) 
will be mutually independent within the accuracy O(e-~ The same 
holds for the even domains; and, though they will be correlated with odd 
ones (as being neighbors), the total number of "independent pieces" in the 
interval 0~< t~< 1 is O(L), the degree of independence being O(e-~ 
Note that if L = O(1/e), the domain length is O(e), so for h ~ e they contain 
the same number of variables, their statistical characteristics, according to 
(3.3), being almost independent of e. 

4 We suppose that the domains are much closer to each other than to the point t = 0, so that 
j = j' -- 10m > 10 for such m. 
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Now, the main results of this section may be summarized as follows: 
For a given accuracy 6 > 0 the interval 0 ~< t ~< 1 can be regarded as 

consisting of L=const/(elog6) domains, the dynamics on which are 
mutually independent within this accuracy [see (3.8)]. In other words, the 
original dynamical system looks like a product of L equal, independent 
within this accuracy, dynamical systems, each located on its "own" domain. 
Moreover, the statistical characteristics of these systems are almost inde- 
pendent of ~ (within the accuracy ,5~e-~ As for the attractor, it 
looks (within the same accuracy!) like a direct product of L subattractors 
associated with these "elementary" dynamical systems. 

The higher is Le (L is proportional to l/e: L = C/e, and may vary only 
through the prefactor C), the poorer is the accuracy -e-o(1//.~), though the 
simpler are these "elementary" dynamical systems (their dimension is 
,-,l/eL). So, one can regard the original dynamical system (1.1) as a very 
simple object--a product of, say, 1000/e elementary dynamical systems 
each of dimension of, say, ~ 3--but within a poor accuracy. If one wants 
to increase the accuracy, one should consider it as a more complex 
object--a product of, say, 100/e elementary dynamical systems of a rather 
complex nature, their dimension being ~ 30, and so on. 

As the properties of these elementary dynamical systems are inde- 
pendent of e (if eL is kept fixed), one can predict within some good 
accuracy the attractor's statistical characteristics in the case e ~ 0, when 
numerical investigation is impossible. 

In addition, such a "domain structure" provides the dimension 
estimate D = O(1/e) consistent with Farmer's experiments. ~ 

4. THE M O D E L  WITH AN EXTERNAL EXCITATION 

This model is described by the equation 

efin+l(t)+u,+l(t)=f(un(t)), 0~<t~<l, U,+I(O)=Zn 

o r  

fin + l(t) = Zne-t/, + io e-(' ~)/~f(Un('r) ) d'r/e (4.1) 

and has chaotic solutions only due to the external excitation z,, i.e., when 
its amplitude 6z=maxzn-min z,r At the same time, the model 
exhibits a marvelous feature: the statistical characteristics of {u,(t)} for 
e ~  1 and t~>e are almost independent of e, t, and the excitation 
characteristics. 
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4.0. Time Scaling 

Let us denote w~(t)=u~(yt), 0 < 7 < 1 .  Then w~ obeys a (4.1)-type 
equation 

# ~ . + l ( ; ) + w . + l ( z ) = f ( w . ( r ) ) ,  0~<~<7, w.(0) = G 

where # = e/? > e, That is, the solution in "the initial interval" 0 ~< t ~< y can 
be described by the same model, but with greater g=a/y. To put it in 
another way, the initial part of the solution is only "compressed" by e 
decreasing (see Fig. 2). 

4.1. Convergence to a Steady State in the Case 6 z = 0  

First, let us prove this steady state does exist for the case z~= 
Zo = const. Obviously the stationary solution obeys the equation 

u*( t) = zoe ~/~ + fo e - ( t -  ~)/~f(u*(z) ) dr/~ ~,z0[U*] 

that is, it is a fixed point of the operator S~,z0. It is easy to prove this 
operator maps the set 

u = {ulllul4~<~c, IIz~lt ~ ~< c /2~ ,  u(O)=zo}  

into itself: S~,=0[U] _ U; C is a constant such that f [ - C ,  C] ~_ [ - C ,  C] 
(Section 2.1). The set U is convex and closed, and, in addition, compact in 
C due to the Arzela theorem, so Shauder's theorem yields the existence of 
a fixed point u* e U, which is the sought for steady state: u* = S~,zo[U*]. 

Now we consider its stability; due to the condition u . (0)=Zo,  the 
perturbations should obey 6u.(O)= 0. To do this, let us first consider the 
behavior of un(t) on the interval 0 ~< t ~< y for some small 7. It is described 
by the equation (see Section 4.0) 

#~.+l(~)+W.+l(~)=f(w~ 0 ~ < ~ y ,  w.(0) = z0 

where # = e/y, r = t/?, and w.(r) = u.(yr), the linearized equation governing 
perturbations being 

#r 0 ~ Z" -..< y, OWn(0) = 0 

[since due to the conditon u . (0)=Zo the perturbations obey 6 u . ( 0 ) = 0 ] ;  
thus 

= I' e ~ -  ~')/~f'(w*(~') ) 6w.(v') d~'/# 6w.+1(~) 
ao 
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This obviously leads to the estimate 

7max If ' l  7max [f ' l  
116w.+111 c ~ H6w.llc ~ 116wnll e 

kt e 

Hence for ~? ~ (e/max I f ' l )  m the perturbations on the interval 0 4  t~<7 do 
damp, and 

lim u . ( t )=u*( t )  Vte [0, 7] 

After the steady state u* has been settled on [0, 7], one can consider the 
behavior on [7, 27]. It is described by an equation of the same type as on 
[0, 3,]: 

l t ~ . + , ( z ) + ~ v . + l ( z ) = f ( ~ . ( z ) ) ,  O<~z<~7, ~.(0) = u.(7) = u*(7) 

[here kn(z )=  un(7 + 7 z)];  the perturbations will obviously damp on this 
interval as well, So, after the solution has converged to the steady state on 
[0, 7], the convergence on [7, 27] begins, and 

lim u.(t) = u*(t) Vt e [0, 273 

and so on. The convergence is of a "propagating type," that is, the transient 
oscillations on the right end (t ~ l)  are still in effect while on the left end 
(t ~ 0) they already have damped. 

4.2. "Spatial" Growth of the Oscillations Amplitude 

Now let 6z ~ 0, but .r 1, so that the amplitude of the chaotic oscilla- 
tions for t ~ 0 is very small. As said above, we can divide the whole interval 
0~< t~< 1 into two subintervals, 0~< t~< 1/2 with a scaled solution on it 
denoted as w.(t ')  =- u.(t'/2), 0 ~< t~< 1, and 1/2 ~< t ~< 1 with one denoted as 
# . ( t )  - u.(1/2 + t/Z): 

2~3Wn + 1(/) + W n + 1(t) = f ( W n ( t ) )  , 

2eW. + 1(0 + ff~. + l( t)  = f ( k . ( t ) ) ,  

0~t~<l, Wn+I(O)-~-Z n 

O~<t~<l, ~.(0) = u.(1) = w.(1) 

So, the dynamics can be completely described by two coupled models with 
e ' =  2e with the first one's "output" [-i.e., w.(1 )] being an excitation for the 
second one. 

Numerical experiments show that for "small oscillations" the "output" 
amplitude is always greater than the "input" one. This can be written as 
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follows: if Du(1) ~ 1, then Du(1) >~ 0(a) Du(O) = O(e) Dz, ~q(e) > 1 {x/Du(t) 
is an "average amplitude '' at the point t: Du(t)=-< [ u , ( t ) - < u n ( t ) ) 2 ] )  1/2, 
where <-> denotes an averaging overn}. Obviously, then, Dw(1)~> 
0(2e) Dw(O) = 0(2e) Du(0); D~(1) ~> 0(2~) D~(0) = ~9(2e) Dw(1) (see Fig. 6); 
thus, Du(1)=Dk(1)>>. [~(2~)]2Du(0). This means that ~9(e)= [0(2e)] 2 
and in the same way it can be shown that Du(1)~> [,9(ke)]kDu(O), which 
can be generalized: 

Du(1)~> [O(eo)]'~ provided Du(1),~ 1 (4.2) 

Hence 0(e) = O ( / ~  l /e )  ~ o o  a s  ~ - ~  0 .  

Now note that u~(to)=U~/to(1) 
Due(to) = Du~/,o(1), or 

(see Section4.2). This leads to 

Du(t)>~[~(eo)]t~O/~Du(O)=O(~'/')Dz provided Du(t )~l  (4.3) 

For large amplitudes this estimate ceases to hold, since, due to the 
boundedness of the solution, the dispersion Du(t) cannot grow to infinity, 
so for tie >> 1 a saturation occurs--i.e., Du(t) ceases to depend on t, e, or 
c~z (see Fig. 7 and 8). Moreover, it appears that the statistical charac- 
teristics of {u,(t)} for t ~ 1, such as the probability distribution P~,k, are 
asymptotically independent of e and cSz; see Figs. 7 and 8 with p(u(1)) 
(=P~,0) plotted for different values of the parameters. 

So the model acts as a "restricting amplifier" of a chaotic signal. 
Let us note that the original model (1.1b) can be regarded as a model 

with external excitation, though of a special type: z,=un(1).  Now the 
"output" is joined to the "input," the operation transforming the 
"amplifier" of chaos into a "generator" of it. And as the excitation proper- 
ties do not influence substantially the solution characteristics (as 
experiments and some theoretical considerations below indicate), they 
should be almost the same in both models (1.1) and (1.2)--compare Fig. 4 
with Figs. 7 and 8. 

z 
n z n . l r - ~ ] w n ( l ~ l - - R ~  ~n(1) ) 

I w wn ........... 

u 
n 

)un(1) 

Fig. 6. 
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Fig. 7. Stationary one-point distribution p~(u(1)) in the model (1.2) (left column) and 
average amplitude of oscillations x/Du(t) vs. t (right column). The excitation is uniformly dis- 
tributed noise with amplitude 6z = 10 6 (top) and 6z = 10 -3 (bottom). In both cases z =0.02.  
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Fig. 8. Same as Fig. 7, but for greater e: s=0.05 .  Left top panel shows that for very small 
6z and e large enough the distribution may substantially differ from that in the original model; 
see Fig. 4. 
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4.3. Asymptot ics  of P~.k for  e ~ 0 in the Model  w i th  
External Excitat ion 

To study this, let us discretisize Eq. (4.1) as in Section 3, discarding 
terms smaller than O(e 1~ = O(e -l~ = O(e 5): 

U n + l ( t l ) = Z n  

u .+ 1(t2) = F2(un(t l ) ,  u . ( t2)  ) + e z .  

u .+  1(t10) = Flo(U. ( t l )  ..... u.(t lo))  + e9z. 

u . + l ( t i )  = F ( u . ( t i _  lo),..., u . ( t i ) ) ,  i =  11,..., N 

the only difference from (2.6) being the "bounda ry  condit ions":  u . ( tN)  is 
replaced by z . ,  while the functions Fi,  F are the same as in (2.6). Unless 
the excitat ion is a pure noise, the dynamica l  equat ion  for z .  should be 
added. Here  z . + l  is supposed to depend on z.  and u. only with some 
"pure"  noise added:  z .+  1 = ~ ( z . ,  u . ) +  3..  This allows one to describe a 
sheer r a n d o m  excitat ion if z .  = 3. as well as a purely deterministic one if 
z .  + 1 = q~(z.). Finally, for z.  + 1 = u. + l ( t N )  = F(un(t  x _  lO) ..... Un(tN) ) even the 
original model  [-in the form (2.6)] can be described by these equations.  

Thus,  the equat ions  governing the model  are 

u.+l ( t l )=z .  

Un+ 1(t2) = F2(un( t l )  , u . ( t2)  ) + czz. 

u.+  1(tlo) = Flo(U. ( t l )  ..... u.(t lo))  + ~9z. (4.4) 

u . + ~ ( t i ) = F ( u . ( t i  lo) ..... u . ( t i ) ) ,  i = 1 1  ..... N 

z .+  1 = ~ ( z . ,  u.(t,),..., Un(tN) ) -k- in 

Were ~ a constant ,  the invar iant  distr ibution of the m a p  (4.4) would 
obey the P e r r o n - F r o b e n i u s  equat ion:  

r 
p~(u, z [ ~) = j 6(ul  - ~:). 6(u2 - F2(v l ,  v2) - ot~) 

• 6(u~-F3(v~, v~, v 3 ) - ~ )  

x 6 ( u i - F ( V i _ l O  ..... vi))  . . . . .  6 (uN- -F(vN- - IO  ..... VN)) 

• 6 ( z - ~ ( ~ , v ~  ..... VN)--~) 

• pAY, ~ I ~) dye.., dVN d~ 
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When going on to the independent random ~'s distributed with the density 
H(~), one should simply average this equation over all ~'s, (13) 

p~(u, z) = f p~(u, z I ~) H(~) d~ 

So, for 

(. 
P~,k(UN k,'", UN) ~ J p~(U, Z) dz d u l . . ,  alia N k 1 

one obtains 

p~,k(UN--k ..... UN) 

=-f P ~ ( U , z ) d z d u l " ' d u u  k-1 

= f 6(Ul -- ~)" 6(U2 -- F2(v,, v2) -- ~x). 6(u3 -- F3(v 1 , t~ 2 , V 3 )  - -  
~2 ) 

x 6 ( u i -  F(vi lo ..... v,)) . . . . .  6 ( u N -  F(VN_ lO,..., VN)) 

X (~(Z -- I~1(~, Vl ,'", 1AN ) -- ~) 

X p~(u  ~ [ ~ ) O ( ~ ) d l ) l . . . d l ) N d ~ d ~ d z d u l . . . d u u _  k 1 

= f 5(UN--k-- F(VN k i0 ..... VU--k)) . . . . .  (~(UN-- F(VN 10 ..... VN)) 

•  k 1 1 ) d V N - k - l O " ' d V u  

which coincides with (2.7) and so is equivalent to 

= f  ( '~k+lOmPe, k+lOm)(UN k 10 . . . . . .  UN) p~,k(UN_ k ..... UN ) "m 

• dUN k lOm' ' 'dUN--k-- I  (4.5) 

as when deriving (2.9). 
Let E denote the set of excitation parameters (~b and H in the case at 

issue). If this excitation gives rise to a chaotic regime, then (2.11) is 
satisfied, and in quite the same way as the estimate (3.1) was derived, one 
gets 

IlP,,k,a_--p~,,k,~-ll=O(x 1/max(~'~')) for e , ~ ' ~ 0  (4.6) 
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As ~ is independent of excitation, the same holds if it is the latter that is 
varied (so that both E and F' give rise to chaos): 

Ilp~,k,E--p~,k,~,lt=O(~c 1/~) for ~--*0 (4.7) 

Moreover, as the operator ~k in (2.8) and (4.5) is the same, we can 
compare P,,k,~ with the corresponding distribution for the original model 
(1.1) denoted as p~,~: 

][p~,k,E--p~,k[[=O(~c 1/~) for e ~ 0  (4.8) 

In contrast with the original equation (t.1), the model with an exter- 
nal excitation possesses a distinguished boundary t = 0, so different t's are 
not equal and the statistical characteristics depend on t. To derive this 
dependence, let us consider a one-point distribution at the point t: 
p~,~(u(t))=p~,E(ult ). In absolutely the same way as was done in 
Section4.2 for Du~(t), one obtains that p~,E(u[ t)=p~/t,~(u] 1), so (4.8) 
reads 

IIP~,E(-I t)-p.II =O(e c'/~) for e/ t~O (4.9) 

where p . (u )= l im~op , (u )  is the limit distribution for the "boundless" 
model (1.1). A similar estimate holds for the two-point distribution 
p~(u(t), u(t + z)), and so on. In other words, the influence of the boundary 
on local (at a given point) statistical characteristics exponentially damps 
and almost vanishes at internal points. 

If, on the contrary, even one of these excitations--say, E--relates 
to a periodic regime, then the associated distribution will be 5-functions 
[e.g., if 5z = 0, then 

p~,k,E(UN_k,..., U N )  = (~(UN__ k - -  b l ~ _ k )  X " . "  X (~(U N - -  U ~ )  

see Section 4.1] which do not converge under the F P O  iterations. (Indeed, 
the Ll distance between two almost all 5-functions is 2.) Thus, in this case 
the estimate (2.9) ceases to hold, and so do (4.7)-(4.9). 

However, in the presence of noise any initial distribution (even a 6-like 
one) converges to the invariant distribution, (14) and hence (4.8) holds if 
both excitations include some amount of noise. 

So: If e ~ 0 ,  while one fixes both excitations, with both of them 
providing a chaotic behavior of {u,} (for which any small noise is suf- 
ficient), then (2.10) holds (i.e., iterations converge), which implies 
(4.7)-(4.9). On the contrary, if e is fixed, and, say, one excitation is varied 
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in such a way that its amplitude f i z z 0 ,  then, due to the continuous 
dependence of the distribution on noise, ~15) 

pe ,  k , E ( l ' l u - - k  .. . . .  1,1N) "'~ ( ~ ( b I N _ k - - I X ~ l _ k )  X . . .  X~(UN--U~) 

as 6z--* 0 and (4.7)-(4.9) cannot hold. 
The conclusions were confirmed by numerical results, where uniformly 

distributed values z, ,  their mean square deviation being 6z, were used as 
an excitation. The distribution p(u(1)) (-=P~,o) for different e's and 6z, is 
plotted in Fig. 7 and 8. One can see, that, if 6z > 0 is fixed while e ~ 0, it 
converges to the same limit distribution as that of the model (1.1); compare 
Fig. 4 with Figs. 7 and 8. But if e is fixed while 6z ~ O, the distribution 
converges to another limit, as Fig. 8a indicates. 

Unfortunately, computation of even the two-point distribution (to 
say nothing about the three-point one!) requires too large a sequence 
{ u,(1), u,(1 - z ) }  for the statistics to be obtained. As for the original model 
(1.1), its uniformity in time enables one to reduce the calculations. Namely, 
since for any t, {u,(t)} are equally distributed, one can use all of them to 
obtain the statistics--i.e., to plot a histogram by 

{ .... u . ( t , )  ..... u . ( t N ) ;  .... u.+,(ti),...,u.+,(tN);...} 

rather than by 

{...; u,(tN),...; u,+ } 

This "small ruse" reduces the amount of (1.1b) iterations to be done 
approximately N times, 5 thus rendering the computation of the two-point 
distributions in Fig. 5 rather a simple problem. 

From the above consideration, an interesting conclusion on the 
original model's properties can be made. Consider a domain [0, tb] of 
the length At=  t b =-r The dynamics on it is governed by the following 
equation (see Section 4.0): 

#~n+l(Z)q-Wn+l(Z)=f(Wn('C)), w.+ l (0 )=u . (1 ) ,  0~<z~<l (4.10) 

where # = e/At, wn(z ) =_ u.(z At). In this equation w.+ 1 depends not only on 
w., but on some external (with respect to w.) "boundary value" u.(1). So, 
(4.10) is a sort of model with external excitation, the latter being {u.(1)}. 

Now let us take two different values e and e '<  e and the domain 
length proportional to e, so that At/e =At'/e'  and the parameter /~ is the 
same in both cases. So, the only thing changing in (4.10) while replacing 

5 As each iteration adds N values to the histogram at once. 
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for e' and At for At' is the characteristics of the excitation {un(0)}. In this 
case with only excitation varying one can apply the estimate (4.9), which 
now reads 

lip,,,(" I v ) -p , , s , ( - Iv ) l l  = O ( e  c~/u) (4.11) 

where pu,~(w [ z) is the distribution of {wn(r)}, e playing the role of the 
excitation characteristics. That is, the greater the time z, the smaller the 
difference of distributions! In other words, for some r e [0, 1] one finds 

IIp.,~(" I ~)-p. ,~,(" I~)tl < IIp~,s(" I 0)-p~,~,(.  10)ll (4.12) 

Now, as w.(T/At)= u.(r), their distributions are the same: p.,s(w[ t/At)= 
ps(wl t); thus, from (4.12) it follows that 

lips(" I t ) -ps , ( "  I t')ll < l ips ( -10)-p , , ( .  I O)ll (4.13) 

for some t, t'. But in the original model the distribution of {un(t)} is inde- 
pendent of t; hence Ps(" I t)=p~(u) and (4.13) means that Ilp~-p~,ll ~< 
tlps-ps,[[, which is possible only if ps=ps,! 

This marvelous complete independence of e is confirmed by numerical 
experiments: the distributions ps(u(t)) plotted in Fig. 4 are independent 
of e within at least 0.1% accuracy for a wide range ofe. The same 
independence of e seems to hold for the two-point distributions 
ps(u(t), u(t + z)) (if z/e = const), and so on. 

Unfortunately, the consideration is not rigorous, as (4.9) is not proved 
to hold for any type of excitation, while the excitation in (4.10) is not of 
the type z ,+ t  = ~(z , ,  w , ) +  r used in the evaluation of (4.9). Moreover, 
the very proof of (4.9) is based on the "basic" estimate (2.9) with ~c(e) being 
independent of ~, which is not yet proved. 

5. D I S C U S S I O N S  

1. For the continuous-time process u(t) the estimate (3.3) (and 
others of this sort) takes the form 

[IP~ - P .  l[ = O ( K : l / e )  (5.1) 

where p, is the distribution of {u(t), u(t+01e),..., u(t+Oke)}, # i=cons t  
(Ati/e=const), and p .  is the "universal" (limit) distribution. The same 
holds for any statistical characteristics derived from the invariant distribu- 
tion, say, for the autocorrelation function Cs(z): 

Ifs(~)-C.(~/e)l=O(~c 1/s) if z < l  (5.2) 

the universal function C.(r/) being almost zero for r//> 10. 

822/69/3-4-23 
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2. The behavior of the Lyapunov exponents (LEs) is somewhat 
different. Though they do converge to the limit value 2,  -~ 0.3 (the same for 
all of them) as e ~ 0 ,  lim~_o 2 , . k=2 , ,  this occurs much more slowly, as 
12,,k--2,1 = O(ke); see Fig. 9. Comparing this with the estimate (5.1) for 
probability distributions, one gets 

12~.k-- 2,1 = O(1/log IIP~-P,II) 

A similar behavior was found in two weakly coupled identical 1D maps(2~ 

( Xn+:)=fd (Xn  ~ ( r xn (1 -Xn) -d (xn -Yn)~  
y.+ \ y . J=\ry . (1 -y . )+d(x . - y . ) J  

where LEs appeared to be very sensitive to the coupling strength d: "~d,m = 
20,m + O(1/1og d) (even for d ~  10 -1~ l~d, m --2o, m N 0 . 1 ) ,  while the distribu- 
tion was not: LIPd-PoII = O(d); thus we also have 

[2a, k -  2o, kl = O(1/log [[Pd--PoI[) 

The similarity seems to result from the fact that for e ~  1 the model (1.1) 
looks as if composed of O(1/e) weakly coupled identical "subsystems" 
located on associated domains (see Section 3). 

3. It should be noted that the particular form of Eq. (1.1) is not 
too important, as only the "local spatial dependence" (LSD) was used. 
The term LSD means that (sufficiently far from the boundary) u,+~(t) 
depends on u,(t') for t - 5e ~< t' <~ t only (recall that t in this model is rather 
"a spatial" coordinate; Section 1 ). 

Fig. 9. 

0.3_-~k 

0.2- 

0~ I- 

r r 
X 'r 

X X 
+ 

+ 

k 

Initial part of the Lyapynov spectrum {2k}. First five LEs are plotted vs. k for 
e=0.05 (+) ,  0.02 ( •  and 0.01 (O). 
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But the LSD property is rather common: for example, the reaction- 
diffusion system 

ut = Duxx + f(u), u = u(x, t) 

determines a mapping in the functional space: un+ l= i f ' [ u , ]  [where 
u , ( x ) -  u(t,, x) = u(n~, x)] with u,+ l(x) effectively depending on u,(x') for 

x -  O(xf-D ) ~< x' ~< x + O(x/-D ) only. So this model's statistical charac- 
teristics are expected to be asymptotically independent of the diffusion 
coefficient D for D ~ 0. 

However, accurate numerical integration for this model is rather dif- 
ficult, and it is natural to put forward a more convenient system with 
similar properties. As the reaction-diffusion system arises from, to put it 
loosely, adding a diffusion term to ODEs, its straightforward simplification 
is to replace ODEs by maps: 

u,+l(x)=#z(SZU,+l/OX2)(x)+f(u,(x)), --L<~x~L (5.3) 

where x is a spatial coordinate and n is a discrete time. The equation 
allows the following interpretation: there is a family of (identical) maps 
u ,+~=  f(u,) located at each point x, which are then diffusively coupled. 
Indeed, Eq. (5.3) can be transformed into (this representation was used in 
ref. 17): 

f 
L 

un+l(x) = G(x-y)f(u,(y))dy (5.3') 
- - L  

where G is the Green's function: G(x)= kt2G"(x)+ 6(x). 
Due to the similarity of (5.3') and (2.1), this model enables almost 

straightforward application of the theory developed for the delay-differen- 
tial equation. Experiments have confirmed that for / ~  1 one- and 
two-point distributions pu(u(x)) and pu(u(x), u(x+Ax)) as well as the 
scaled correlation function C,(x/#) are almost independent of #; see 
Figs. 10-12. Moreover, an estimate similar to (4.9) 

FIP~(" I x ) - P , I I  = O ( e x p ( - C  Ix-x~l/~) (5.4) 

indicates that the influence of the boundary conditions and the position x 
exponentially damps as the distance ]X--Xb] grows between x and the 
nearest boundary. Hence the local ( = i n  the vicinity of a given point x) 
statistical characteristics [e.g., pu(u(x) lx)] at internal points are almost 
independent of/~, x, and the boundary conditions. Such a property seems 
to be somewhat similar to the forgetting initial conditions in ODEs. 

Further simplification of the model is achieved by replacing the 
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p(u l  

0.5 / 

u 
p= .0100 

pIu/ F 

/ 
1.0 -I.0 01.5 OJO 0.15 1.0 

U 
~= .0010 

Fig. 10. One-point distribution pu(u(x)) for the "diffusively coupled maps" model (5.3) for 
# = 0.01 (left) and/~ = 0.001 (right). The area length L = 0.5, the b.c. being periodic. 

continuous spatial coordinate x by a discrete one i, i.e., by replacing the 
integral in (5.3') by a sum, e.g., 

U,+l( i )=�89 -N<~i<~U (5.5) 

Such models, called CMLs (coupled map lattices), are very popular  in 
studying spatiotemporal  chaos. (16) The map (2.6) is of this type, so the 
theory developed for it is obviously applicable to CMLs as confirmed 
experimentally. 

4. The asymptotics obtained appeared very useful in investigating 
the "nonchaotic (transient) turbulence" discovered by Crutchfield and 
Kaneko (21) in CMLs with a nonchaotic, i.e., nonexpanding local map f of 
the form f ( x )=~ox+s  (mod 1), co~-0.9, s~0 .1 .  For  this map I f ' [  < 1 this 
implies that a "real" chaos in the model with such an f is impossible; and 
the attractor(s) should be "laminar." Nevertheless, during an enormous 
time a "turbulent" (i.e., irregular) behavior was recorded and only later 
does the trajectory reach the "actual" laminar attractor. The duration of 
the transients was found to grow a s  TN"~ exp(cNV), 2 ~< v ~< 3. (21) 

Our  investigations (22) have revealed that the phenomenon is related to 

I.O 1.0 

0.5 ~ a ~  O.S F 7  
0,0 / ~ /  0.0 

-0,5 0,5 

- 1"?] .0 -01.5 0!0 0!5 1!0 ]'O1.0 01.5 0!0 0!5 1!0 
u(x) u(x] 

,u = .OlO A• =1.0 ,u = ,OOl ~• =1.0 

Fig. 11. Same as Fig. 10, but for two-point distribution p,(u(x), u(x + p)). 
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f ! A ,  J 

\ ,  
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\\\x 
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u = . 0100  u = . 0010  

Fig. 12. Same as Fig. 10, but for correlation function C~(x). 

the attractor crisis: with slightly varied f one can transform the transient 
turbulence into an "eternal" chaos. In the original model the chaotic attrac- 
tor disappears: a tiny "hole" arises in it through which all trajectories 
sooner or later (rather later, as it were) escape the "turbulent area" and 
reach the laminar attractor. Until then, i.e., during the "turbulent" period, 
spatial correlations decay; thus, the "hole" volume scales as VN ,,~ e-TN, (22) 
and the duration of the transients can be estimated in the usual way 
in dealing with this crisis{Z3): T N ~  1/Pu, where PN = VNPN(Uh) is the 
probability of "falling" into the hole located near the point u = uh, PN is 
the density of the quasistationary distribution. It appeared that the quasi- 
stationary distribution enables the same asymptotic estimates as the 
invariant one, that is, 6N = ]pN(Uh)--p,(Uh)[ <~ O(e--O(N)), from which it 
follows that 

Tu ,.~ e~ ,(uh) + (~ N] (5.6) 

Generally, p , ( u h ) r  0, and thus TN ,.~ ecN, (22) which is the case for another 
critical CML(24}; but in the Crutchfield-Kaneko model it is zero. Hence the 
"corrections" 6 N prevail and TN>~exp(cN2). As the convergence rate 
]pN(Uh)--p,(Uh)[ = O(e -O(N)) is only the slowest possible, T N may grow 
even faster. 

Therefore it is the exponential convergence of the statistical charac- 
teristics that may cause a hyperexponenfial growth of the duration of 
transients in distributed systems. And there are reasons to believe (2~) that 
such phenomena may occur in hydrodynamics. 
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